Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Reactive oxygen species (ROS) are common cellular oxidants that when overproduced by cellular stressors cause harm to cells. Detection of ROS is of utmost importance to understanding a wide variety of cellular function and toxicity mechanisms. Conventional ROS fluorescence assays involve using a single dye to visualize the ROS quantity. Herein, we describe ROS-sensitive, fluorescent-dye-incorporated carbon dots with dual fluorescence capabilities and good biocompatibility. Carbon dots (CDs) made of citric acid and urea were synthesized with incorporated cyanine-3-amine (Cy3), a bright red fluorescent dye, to create Cy3-CDs. To get Cy3 into the ROS-sensitive form, this work demonstrated that Cy3 alone and Cy3 within carbon dots can be electrochemically reduced to their colorless ROS-sensitive form. Cy3, CDs, and Cy3-CDs are all responsive to additions of superoxide, leading to an increase in the fluorescence. Overall, this work examines how O2•– and additional oxidizers interact with CDs, Cy3, and Cy3-CDs, and molecular-level hypotheses are explored that will inform the design of future carbon dot-based ROS sensors.more » « lessFree, publicly-accessible full text available July 14, 2026
-
ABSTRACT Nonmuscle myosin II (NMII) generates cytoskeletal forces that drive cell division, embryogenesis, muscle contraction and many other cellular functions. However, at present there is no method that can directly measure the forces generated by myosins in living cells. Here, we describe a Förster resonance energy transfer (FRET)-based tension sensor that can detect myosin-associated force along the filamentous actin network. Fluorescence lifetime imaging microscopy (FLIM)-FRET measurements indicate that the forces generated by NMII isoform B (NMIIB) exhibit significant spatial and temporal heterogeneity as a function of donor lifetime and fluorophore energy exchange. These measurements provide a proxy for inferred forces that vary widely along the actin cytoskeleton. This initial report highlights the potential utility of myosin-based tension sensors in elucidating the roles of cytoskeletal contractility in a wide variety of contexts.more » « less
-
Carbon dots (CDs) are emerging as the material of choice in a range of applications due to their excellent photoluminescence properties, ease of preparation from inexpensive precursors, and low toxicity. However, the precise nature of the mechanism for the fluorescence is still under debate, and several molecular fluorophores have been reported. In this work, a new blue fluorophore, 5-oxopyrrolidine-3-carboxylic acid, was discovered in carbon dots synthesized from the most commonly used precursors: citric acid and urea. The molecular product alone has demonstrated interesting aggregation-enhanced emission (AEE), making it unique compared to other fluorophores known to be generated in CDs. We propose that this molecular fluorophore is associated with a polymer backbone within the CDs, and its fluorescence behavior is largely dependent on intermolecular interactions with the polymers or other fluorophores. Thus, a new class of non-traditional fluorophores is now relevant to the consideration of the CD fluorescence mechanism, providing both an additional challenge to the community in resolving the mechanism and an opportunity for a greater range of CD design schemes and applications.more » « less
An official website of the United States government
